New Flexible Channels for Room Temperature Tunneling Field Effect Transistors
نویسندگان
چکیده
منابع مشابه
New Flexible Channels for Room Temperature Tunneling Field Effect Transistors
Tunneling field effect transistors (TFETs) have been proposed to overcome the fundamental issues of Si based transistors, such as short channel effect, finite leakage current, and high contact resistance. Unfortunately, most if not all TFETs are operational only at cryogenic temperatures. Here we report that iron (Fe) quantum dots functionalized boron nitride nanotubes (QDs-BNNTs) can be used a...
متن کاملGraphene field-effect transistors as room-temperature terahertz detectors.
The unique optoelectronic properties of graphene make it an ideal platform for a variety of photonic applications, including fast photodetectors, transparent electrodes in displays and photovoltaic modules, optical modulators, plasmonic devices, microcavities, and ultra-fast lasers. Owing to its high carrier mobility, gapless spectrum and frequency-independent absorption, graphene is a very pro...
متن کاملAxial SiGe heteronanowire tunneling field-effect transistors.
We present silicon-compatible trigated p-Ge/i-Si/n-Si axial heteronanowire tunneling field-effect transistors (TFETs), where on-state tunneling occurs in the Ge drain section, while off-state leakage is dominated by the Si junction in the source. Our TFETs have high I(ON) ~ 2 μA/μm, fully suppressed ambipolarity, and a subthreshold slope SS ~ 140 mV/decade over 4 decades of current with lowest ...
متن کاملL-Shaped Tunneling Field-Effect Transistors for Complementary Logic Applications
In order to implement complementary logic function with L-shaped tunneling field-effect transistors (TFETs), current drivability and subthreshold swing (SS) need to be improved more. For this purpose, highk material such as hafnium dioxide (HfO2) has been used as gate dielectric rather than silicon dioxide (SiO2). The effects of device parameters on performance have been investigated and the de...
متن کاملNear-room-temperature Processed Metal Oxide Field Effect Transistors for Large-area Electronics
Recently, sputtered metal-oxide-based field effect transistors (FETs) have been demonstrated with higher charge carrier mobilities, higher current densities, and faster response performance than amorphous silicon FETs, which are the dominant technology used in display backplanes [1-2]. Furthermore, the optically transparent semiconducting oxide films can be deposited in a near-room-temperature ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Scientific Reports
سال: 2016
ISSN: 2045-2322
DOI: 10.1038/srep20293